
 

 

 

Vector Algebra 

 
1. Scalars 

 
A physical quantity which is completely described by a single real number is called a 
scalar. Physically, it is something which has a magnitude, and is completely described 
by this magnitude. Examples are temperature, density and mass. In the following, 

lowercase (usually Greek) letters, e.g.  ,  ,  , will be used to represent scalars. 

 

2. Vectors 
 

The concept of the vector is used to describe physical quantities which have both a 

magnitude and a direction associated with them. Examples are force, velocity, 

displacement and acceleration. 

 

Geometrically, a vector is represented by an arrow; the arrow defines the direction of the 

vector and the magnitude of the vector is represented by the length of the arrow, Fig. 

1a. 

 

Analytically, vectors will be represented by lowercase bold-face Latin letters, e.g. a, r, q. 
 

The magnitude (or length) of a vector is denoted by a or a. It is a scalar and must be 

non-negative. Any vector whose length is 1 is called a unit vector; unit vectors will 

usually be denoted by e. 
 
 
 

 

 
 

 

Figure 1: (a) a vector; (b) addition of vectors 

 
 

i. Vector Algebra 
 
The operations of addition, subtraction and multiplication familiar in the algebra of 

numbers (or scalars) can be extended to an algebra of vectors. 
 

 

 

 

 

 

 

 

 
 



 

 

 

The following definitions and properties fundamentally define the vector: 

1. Sum of Vectors: 

The addition of vectors a and b is a vector c formed by placing the initial point of 
b on the terminal point of a and then joining the initial point of a to the terminal 

point of b. The sum is written c  a  b . This definition is called the 

parallelogram law for vector addition because, in a geometrical interpretation of 
vector addition, c is the diagonal of a parallelogram formed by the two vectors a 

and b, Fig. 1b. The following properties hold for vector addition: 

a  b  b  a … commutative law 

a  b  c  a  b  c … associative law 

 
2. The Negative Vector: 

For each vector a there exists a negative vector. This vector has direction 

opposite to that of vector a but has the same magnitude; it is denoted by  a . A 
geometrical interpretation of the negative vector is shown in Fig. 2a. 

 

3. Subtraction of Vectors and the Zero Vector: 

The subtraction of two vectors a and b is defined by a  b  a  (b), Fig. 

2b. If a  b then a  b is defined as the zero vector (or null vector) and is 

represented by the symbol o. It has zero magnitude and unspecified direction. A 

proper vector is any vector other than the null vector. Thus the following 

properties hold: 
a  o  a 

a   a  o 
 

4. Scalar Multiplication: 

The product of a vector a by a scalar is a vector a with magnitude  times 

the magnitude of a and with direction the same as or opposite to that of a, 

according as is positive or negative.  If   0 , a is the null vector. The 
following properties hold for scalar multiplication: 

   a  a  a 

 a  b  a  b 

 (a)  ( )a 

… distributive law, over addition of scalars 

… distributive law, over addition of vectors 

… associative law for scalar multiplication 
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Figure 2: (a) negative of a vector; (b) subtraction of vectors 

 a 

 

 

 

 
 



 

 

 

a  a 

Note that when two vectors a and b are equal, they have the same direction and 

magnitude, regardless of the position of their initial points. Thus a  b in Fig. 3. A 

particular position in space is not assigned here to a vector – it just has a magnitude and a 

direction. Such vectors are called free, to distinguish them from certain special vectors to 
which a particular position in space is actually assigned. 

 

 

Figure 3: equal vectors 

 

The vector as something with “magnitude and direction” and defined by the above rules is 

an element of one case of the mathematical structure, the vector space. The vector space 

is discussed in the next section, §1.2. 

 
 

ii. The Dot Product 
 

The dot product of two vectors a and b (also called the scalar product) is denoted by 

a  b . It is a scalar defined by 
 

a  b  a b cos . (1) 

 
 here is the angle between the vectors when their initial points coincide and is restricted 

to the range 0     , Fig. 4. 
 
 

 
Figure 4: the dot product 

 
An important property of the dot product is that if for two (proper) vectors a and b, the 

relation a  b  0 , then a and b are perpendicular. The two vectors are said to be 

orthogonal.  Also, a  a  a a cos(0) , so that the length of a vector is a  . 

 

Another important property is that the projection of a vector u along the direction of a 

unit vector e is given by u  e . This can be interpreted geometrically as in Fig. 5. 

  
 

 

 

 

 

 



 

 

 

a 

 

 

 

 

 

 

 

 

e 

u  e  u cos 

 

Figure 5: the projection of a vector along the direction of a unit vector 

 

It follows that any vector u can be decomposed into a component parallel to a (unit) 

vector e and another component perpendicular to e, according to 

u  u  ee  u  u  ee 
 

(2) 

 

The dot product possesses the following properties (which can be proved using the above 

definition) : 

(1) 

(2) 

a  b  b  a 

a  b  c  a  b  a  c 

(commutative) 

(distributive) 

(3)  a  b  a  b 
(4) a  a  0 ; and a  a  0 if and only if a  o 

 

 

iii. The Cross Product 
 

The cross product of two vectors a and b (also called the vector product) is denoted by 

a  b . It is a vector with magnitude 
 

a  b  a b sin  (3) 

 

with  defined as for the dot product. It can be seen from the figure that the magnitude 

of a  b is equivalent to the area of the parallelogram determined by the two vectors a 

and b. 
 

a  b 
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Figure 6: the magnitude of the cross product 

 

The direction of this new vector is perpendicular to both a and b. Whether a  b points 

 

 

 

 



 

 

 

“up” or “down” is determined from the fact that the three vectors a, b and a  b form a 
right handed system. This means that if the thumb of the right hand is pointed in the    
direction of a  b , and the open hand is directed in the direction of a, then the curling of 

the fingers of the right hand so that it closes should move the fingers through the angle  , 
0     , bringing them to b. Some examples are shown in Fig. 7. 

 

Figure 7: examples of the cross product 

 

The cross product possesses the following properties (which can be proved using the 

above definition): 

(1) 

(2) 

a  b  b  a 

a  b  c  a  b  a  c 

(not commutative) 

(distributive) 

(3)  a  b  a  b 

(4) a  b  o if and only if a and b  o are parallel (“linearly dependent”) 
 

 

The Triple Scalar Product 
 

The triple scalar product, or box product, of three vectors u, v, w is defined by 

 

Triple Scalar Product (4) 

 
Its importance lies in the fact that, if the three vectors form a right-handed triad, then the 

volume V of a parallelepiped spanned by the three vectors is equal to the box product. 
 

To see this, let e be a unit vector in the direction of u  v , Fig. 8. Then the projection of 

w on u  v is h  w  e , and 

w  u  v  w   u  v e 
 u  v h 

 V 

 

 
(5) 
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a  b 

 

 
 

 

 

 

a  b 

u  v w  v  w u  w  u v 



 

 

 

u 
 

 

 

Figure 8: the triple scalar product 

 

Note: if the three vectors do not form a right handed triad, then the triple scalar product 

yields the negative of the volume. For example, using the vectors above, 

w  v  u  V . 

   



 

 

 

 

 

 

 


