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Maxwell’s distribution law




Maxwell-Boltzmann statistics gives the average number of
particles found in a given single-particle microstate. Under
certain assumptions, the logarithm of the fraction of
particles in a given microstate is proportional to the ratio of
the energy of that state to the temperature of the system:
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The assumptions of this equation are that the particles do
not interact, and that they are classical; this means that
each particle's state can be considered independently
from the other particles' states. Additionally, the particles
are assumed to be in thermal equilibrium.


https://en.m.wikipedia.org/wiki/Microstate_(statistical_mechanics)

This relation can be written as an equation by
introducing a normalizing factor:
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where:

e N;is the expected number of particles in

the single-particle microstate i,

e N is the total number of particles in the
system,

e E;is the energy of microstate i,

» the sum over index j takes into account all

microstates,

e Tis the equilibrium temperature of the
system,

e kis the Boltzmann constant.

The denominator in Equation (1)’is simply a normalizing


https://en.m.wikipedia.org/wiki/Maxwell%E2%80%93Boltzmann_distribution#math_1

factor so that the ratios  add up to unity — in other
words it is a kind of partition function (for the single-
particle system, not the usual partition function of the
entire system).

Because velocity and speed are related to energy,
Equation (1) can be used to derive relationships between
temperature and the speeds of gas particles. All that is
needed is to discover the density of microstates in energy,
which is determined by dividing up momentum space into
equal sized regions.

Distribution for the momentum vector

The potential energy is taken to be zero, so that all energy
IS In the form of kinetic energy. The relationship

between kinetic energy and momentum for massive non-
relativisticparticles is


https://en.m.wikipedia.org/wiki/Partition_function_(statistical_mechanics)
https://en.m.wikipedia.org/wiki/Maxwell%E2%80%93Boltzmann_distribution#math_1
https://en.m.wikipedia.org/wiki/Kinetic_energy#Kinetic_energy_of_rigid_bodies
https://en.m.wikipedia.org/wiki/Special_relativity
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where p? is the square of the momentum vector p = [p,, Py, p,l. We may therefore
rewrite Equation (1) as:
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where Z is the partition function, corresponding to the denominator in Equation (1).
Here m is the molecular mass of the gas, T is the thermodynamic temperature and k is
the Boltzmann constant. This distribution of NV; : N is proportional to the probability
density function f; for finding a molecule with these values of momentum

components, so:
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The normalizing constant can be determined by recognizing that the probability of a
molecule having some momentum must be 1. Integrating the exponential in (4) over
all py, py, and p, yields a factor of
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So that the normalized distribution function is:
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The distribution is seen to be the product of
three independent normally distributed
variables Pz, Py, and P, with variance mkT.
Additionally, it can be seen that the magnitude
of momentum will be distributed as a
Maxwell-Boltzmann distribution, with

a = y/mkT. The Maxwell-Boltzmann
distribution for the momentum (or equally for
the velocities) can be obtained more
fundamentally using the H-theorem at
equilibrium within the Kinetic theory of gases
framework.



Distribution for Enerqy

The energy distribution is found imposing

fE(E)dE = f,(p)d’p, (7)

where d3p is the infinitesimal phase-space
volume of momenta corresponding to the
energy interval d f. Making use of the
spherical symmetry of the energy-momentum
dispersion relation F = |p|2/2m, this can

be expressed in terms of dF as



d*p = 4n|p|*d|p| = 47m+/2mEdE. (8)

Using then (8) in (7), and expressing everything in terms of the energy F, we get
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and finally
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Since the energy is proportional to the sum of the squares of the three normally distributed
momentum components, this energy distribution can be written equivalently as a gamma
distribution, using a shape parameter,

Kshape = 3/2 and a scale parameter,

escale = k.

Using the equipartition theorem, given that the
energy is evenly distributed among all three
degrees of freedom in equilibrium, we can
also split fg(F)dFE into a set of chi-squared
distributions, where the energy per degree of
freedom, €, is distributed as a chi-squared
distribution with one degree of freedom, [14
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At equilibrium, this distribution will hold true for any number of degrees of freedom. For
example, if the particles are rigid mass dipoles of fixed dipole moment, they will have
three translational degrees of freedom and two additional rotational degrees of freedom.
The energy in each degree of freedom will be described according to the above chi-
squared distribution with one degree of freedom, and the total energy will be distributed
according to a chi-squared distribution with five degrees of freedom. This has
implications in the theory of the specific heat of a gas.
The Maxwell-Boltzmann distribution can also be obtained by considering the gas to be
a type of quantum gas for which the approximation € >> k T may be made.


https://en.m.wikipedia.org/wiki/Gamma_distribution
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