

B: Organic Chemistry Paper IV - Physical and organic Chemistry B.Sc. Part II

By Sonu Ram Shankar Assistant Professor Department of Chemistry

Marwari College, Darbhanga

A constituent Unit of Lalit Narayan Mithila University, Kameshwar Nagar, Darbhanga

Active methylene compounds:

Z-CH₂-Z¹

where Z and Z¹ can be $-CO_2R$, COR, $CONR_2$, CN, NO_2 , COR, SO_2R , SO_2OR , SO_2NR_2 **Example**:

• Ethyl acetoacetate; Z = CH₃C(O)- and Z¹ = -CO₂Et

 CH_3 -C(O)-CH₂-CO₂Et

• Diethyl melonate ester; Z, Z¹= CO₂Et

 $CH_2(-CO_2Et)_2$

Active methylene compounds Ethyl acetoacetate (EAA)

Discovery

Reaction

Na + EtOAc \rightarrow Ethyl acetoacetate (EAA) or acetoacetic ester

Speculation about structure of EAA

Geuther (1863)

CH₃C(OH)=CHCO₂Et (β-hydroxycrotonic ester)

Evidences for unsaturated hydroxyl group

EAA + Na \rightarrow H₂(\uparrow) presence; of hydroxyl group

EAA+ $Br_2 \rightarrow$ Decolourization; presence of unsaturation

EAA + FeCl₃ \rightarrow reddish violet colour; -C(OH)=C- similar to phenolic group

Frankland and Dupa (1865)

 $CH_3COCH_2CO_2Et$ (β -ketobutyric ester)

Evidences for ketonic group

 $EAA + NaHSO_3 \rightarrow Bisulphite addition product$

 $EAA + HCN \rightarrow Cyanohydrin product$

Structure of EAA (continued)

Both formulae are right (1910).

There is equilibrium between enol and keto form.

 $CH_3COCH_2CO_2Et \xrightarrow{\rightarrow} CH_3C(OH)=CHCO_2Et$

Knorr (1911)

Isolation of two different form.

1) Cooled EAA to -78°C. Keto form crystallized.

2) Sodium derivative of EAA cooled to -78°C. Neutralized with equivalent HCl. Enol form in solidified as glassy solid.

Solid state:

No equilibrium. only one state exists.

Liquid and gaseous state:

equilibrium exists but stability differs.

it is sensitive to temperature, solvent, pH, catalyst, pressure etc.

Tautomerism

Laar (1885) (*Greek*: same parts)

Tautomers or tautomerides:

Structurally different compounds in rapid equilibrium

Example:

Keto-enol tautomerism	>CH-C(=O)< → _←	>C=C(-OH)<
Three carbon system;	>CH-C=C< \rightarrow_{\leftarrow}	>C=C-CH<
Nitoso-oxime;	-CH-N=O \rightarrow_{\leftarrow}	C=N-OH
Nitro-aci;	-CH-NO ₂ \rightarrow_{\leftarrow}	C=N(O)OH
Imine-enamine;	-CH-C=N- \rightarrow_{\leftarrow}	-C=C-NH-
Amido-imidol	NH-C=O → _←	N=C-OH
azo-hydrazone	N=N-CH \rightarrow_{\leftarrow}	NH-N=C
diazo- amino	N=N-NH → _←	NH-N=N
Diazo-nitrosamine	Ar-N=NOH $^{→}_{\leftarrow}$	Ar-NH-N=O

Evidences of tautomerism

Direct separation

keto enol equilibrium is very sensitive to pH and even to soft glass.

Enol is more volatile than keto.

Meyer (1920) separated these in aseptic condition by fractional distillation.

Indirect evidence

Deuterium exchange in CH₃COCH₃ in D₂O

Tautomerism

Estimation of equilibrium

Two types; physical and chemical

Physical methods:

non- interfering, preferred

➢ Refractive index (RI);

- ◆ If isolable, then independent RI is compared with the RI of the equilibrium mixture, i.e. EAA, or
- From table of atomic refraction, independent refractive indices of both forms are calculated and equilibrium estimated with the observed RI.
- Conductivity measurement; If two forms differ in conductivity then conductivity measurement is measured i.e. nitromethane

> Optical activity; If two forms have different optical activity then optical rotation is measured. mutaroration

Proton NMR.

Tautomerism

Estimation of equilibrium

Chemical methods:

Reaction should be faster than the interconversion

two types; direct and indirect methods

Direct method

 Br_2 reacts rapidly with enol form. Fast Titration with Br_2 at 0°C.

Appearance of colour of bromine is end point.

Indirect method

Excess of ethanolic Br₂ is added. unreacted Br₂ is removed with excess of 2-naphthol.

 $\rm Br_2$ consumed is calculated by addition of KI and HCl and then estimation of $\rm I_2$ with standard thiosulphate.

Reaction

 $CH_{3}-C(OH)=CH-CO_{2}Et + Br_{2} \rightarrow CH_{3}-C(=OH^{+})-CHBr-CO_{2}Et + Br^{-}$

 CH_3 -C(=OH⁺)-CHBr-CO₂Et \rightarrow CH₃-CO-CHBr-CO₂Et +H⁺

EAA: Tautomerism

Stability

Thermodynamics of equilibrium

Keto form	Enol form				
С-Н, С-С, С=О	С=С, С-О, С-ОН				
1500 KJ/mol	1450 KJ/mol	Stability of keto form 50 KJ/mol			
Keto $\stackrel{\rightarrow}{\leftarrow}$ Enol; K = [Enol]/[Keto]					
ΔG ^θ = RTlnK					
for mixture with 1% enol; ΔG^{Θ} = -5.7 log(1/99) = 11.42 KJ/mol					
for mixture with 99% enol; ΔG^{Θ} = -5.7 log (1/99) = -11.42 KJ/mol					

Total difference is 22.82 KJ/mol

EAA: Tautomerism

Stability

H-bond

Internal H-bond is 29.3 KJ/mol in EAA; enol will be favoured. Enolization is exhibited by methylene (- CH_2 -) and methyne (>CH-) adjacent to a carbonyl.

Resonance effect

Crotonaldehyde	MeCH=CHCHO		R.E.; 10.04 KJ/mol	
Ethylacetate	MeC(C=O)-OEt		R.E. 75.31 KJ/mol	
Ethyl methacralate	e CH ₂ =C(Me)-C(=O)C	DEt	R.E.; 75.31 KJ/mol	
Double bond is not in resonance with ester group				
Ester group is only having inductive effect				
Ethyl methacrylate structure is similar to enol form				
H-O-C(M	le)=CH-C(=O)Et	\leftrightarrow	H-O ⁺ =C(Me)=CH-C(-O ⁻)Et	
ketone g	roup favours enol			
Stabilization of anal Ecotylacotone (dikatone) > EAA((monekatone) > DEM (Ne kate				

Stabilization of enol Ecetylacetone (diketone) > EAA((monoketone) > DEM (No ketone)

EAA: Tautomerism

Stability :

Entropy effect

Enol has less entropy than Keto due to double bond and cyclic structure

Substitution effect

Methyl at α position has more strain energy due to steric repulsion.

Solvent effect

Enol has internal H-bond. Protic solvent decrease enol

EAA: Tautomerism

Acidity of keto compound

 $-CH_2-C(=O)-+B \xrightarrow{\rightarrow} BH + -CH^{-}-C(=O)- \leftrightarrow -CH=C(-O^{-})-EAA; pK_a 10.7, DEM ; pK_a 8.24$ Similar to enol content in proton accepting solvent

Stability of enol may improve, if there is

Conjugation of double bond Aryl group C_6H_5 -CO-CH₂-CO-C₆H₅ (96%) internal H-Bond fluorinated enols

If there are two symmetrical carbonyls adjacent to methelene or methyne, one will be enolized. If unsymmetrical, one will be predominantly enolized.

EAA: Tautomerism

Mechanism

Two step; bimolecular reaction

Base catalysed, enolate ion intermediate

 $B + R_2 CHCOR \rightarrow_{\leftarrow} BH^+ + R_2 C^-COR \leftrightarrow R_2 C = C(-O^-)R$

inductive effect of alkyl group controlled

due to steric hindrance in attachment of base to proton alkyl group depresses

Acid catalysed, removal of Proton from conjugated acid of ketone

 $H^+ + R_2 CHCOR \xrightarrow{\rightarrow} R_2 CHC(OH^+)R \xrightarrow{\rightarrow} R_2 C=C(OH)R + H^+$

hyperconjucation by alkyl group controlled

there is no steric hindrance on attachment of proton to oxygen alkyl group has no affect

Concerted; Termolecular reaction

Water as acid and/or base

Transition state is more similar to enol than to ketone